Crystallization of Membrane Proteins in Nanoliter Volumes Using Plug-based Microfluidics

Liang Li, Cory Gerdts, Debarshi Mustafi, Qiang Fu, Delai Chen Rustem Ismagilov * The University of Chicago June 20th, 2007

Formation of Droplets (Plugs) in Microfluidics

H. Song, J. D. Tice, R. F. Ismagilov Angew. Chem.-Int. Edit. 2003, 42, 768.

Eliminate Dispersion: Plugs Form in Fluorinated Carrier Fluid

Control Concentrations: Vary the Flow Rates

H. Song and R. F. Ismagilov *J. Am. Chem. Soc.* 2003, *125*, 14613.

Enhance Mixing Rate: Use Winding Channels

Slow Mixing in Straight Channels

Millisecond Kinetics Using Nanoliters of Solution

H. Song and R. F. Ismagilov *J. Am. Chem. Soc.* 2003, *125*, 14613-14619.

Slow Ordered Growth, **BUT No Nucleation Precipitation Nucleation** Region Region Metastable Region Nucleation; Fast Disordered Growth Undersaturated Region

Protein Concentration

Crystallizing Agent Concentration ->

Protein Crystallization is Commonly Done in 100 -1000 nL (1 μL) droplets

Vapor Diffusion

Optimal system:

- -- Many trials
- -- Low sample consumption
- -- Rapid
- -- Broad and dense coverage of space
- -- No evaporation
- -- Reproducibly generates trials
- -- Reliably handles membrane protein

Microbatch

Microbatch Plate

Crystallization in X-ray Capillaries: No Evaporation

Stable for over a year

Crystallizing Agent Concentration

Protein Concentration

Independent Control of Nucleation and Growth Using Time and Concentration Control

C. J. Gerdts and R.F.Ismagilov Angew. Chem. Int. Ed. 2006, 45,8156

Separation of Nucleation and Growth - Microfluidic Seeding

Microfluidic Seeding with SARS Nucleocapsid N-terminal Domain

Crystallization of Oligoendopeptidase F - Microfluidic Seeding

Precipitation in VD drop 100 μm

Clusters in VD drop 100 μr

100 μm

Data Collection - Structure Determination

- metallopeptidase family M3

- selected by Midwest Center for Structural Genomics but unsolved and set aside

- solved by SAD technique
- 3.1 Å resolution
- Space group: P3121; Unit Cell
- Parameters a=b 119.50 c=248.90
- R-factor = 0.196, Rfree = 0.248
- Solvent Content: ~70%;

C. J. Gerdts and R.F.Ismagilov Angew. Chem. Int. Ed. 2006, 45,8156

Mixing is also Important for Protein Crystallization: Effective Nucleation by Slow Chaotic Mixing

Chen D. L., Gerdts C. J., Ismagilov R. F. J. Am. Chem. Soc. 2005, 127, 9672-9673.

Understanding the Mixing Effect with a Chaotic Mixing Model

Assumption:
Only nucleation at interfaces is important

Lifetimes of Interfaces are long

Lifetimes of Interfaces are short

Experimental Results: Mixing Effect at High Supersaturation

Chen D. L., Gerdts C. J., Ismagilov R. F. J. Am. Chem. Soc. 2005, 127, 9672-9673.

Protein Crystallization Phase Diagram: Time Dependent

Slow Mixing:

Precipitation happens faster than mixing

Fast Mixing:

Mixing happens faster than precipitation

Experimental Results: Mixing Effect at Low Supersaturation

No crystals may mean improper mixing instead of a bad precipitant

Slow Mixing

Fast Mixing

Chen D. L., Gerdts C. J., Ismagilov R. F. J. Am. Chem. Soc. 2005, 127, 9672-9673.

Protein Crystallization Phase Diagram: Time Dependent

Slow Mixing:

Nucleation happens faster than mixing

Fast Mixing:

Mixing happens faster than nucleation

Mixing Effect in the Crystallization of a Novel Protein

Slow Mixing

many crystals

Fast Mixing

few crystals

Developing Microfluidic Tools to Screen Protein Crystallization Conditions

1. Gradient Screen of Crystallization Conditions

B. Zheng, L. S. Roach, R. F. Ismagilov *J. Am. Chem. Soc.* 2003, 125, 11174.

Developing Microfluidic Tools to Screen Protein Crystallization Conditions

2. Sparse Matrix Screen in Nanoliter Plugs

B. Zheng, R. F. Ismagilov *Angew. Chem.* 2005, 117, 2576.

Crystallization of Membrane Proteins

- Determining crystal structure of membrane protein: focus of major research efforts.
 - Important signaling functions
 - Targets of >50% drugs
- Crystallization of membrane protein: big challenge
 - Low in quantity, unstable over time.
 - Search of crystallization conditions: Broad and dense
- Two Challenges on handling membrane proteins
 - High viscosity
 - Low surface tension

Gradient Screen of Crystallization Conditions

Dense but NOT Broad!

Sparse Matrix Screening in Nanoliter Plugs

Pre-formed Cartridge

Broad but NOT Dense!

Hybrid Method: Combining Sparse Matrix and Gradient Screening

L. Li, D. Mustafi, Q. Fu, V. Tereshko, D.L. Chen, J.D. Tice, R.F. Ismagilov *PNAS*, 2006, 103, 19243.

Crystallization of Membrane Proteins using Hybrid Method: Two Technical Developments Alleviate the Challenges

1. The use of Teflon capillaries for the formation, transport, and storage of plugs.

2. The use of perfluoroamines as carrier fluids Detergent solution

Membrane Protein Crystallization in Teflon Tubing: Compact Plug Storage

1 meter of tubing, ~1000 trials

Crystallization of Membrane Proteins using Hybrid Method: Long Term Plug Storage

Crystallization of Model Membrane Proteins using Hybrid Method

Reaction Center

Precipitant #1

Precipitant #2

Porin

scale up

Diffraction of Membrane Protein Crystals Grown in the Hybrid Method

L. Li, D. Mustafi, Q. Fu, V. Tereshko, D.L. Chen, J.D. Tice, R.F. Ismagilov *PNAS*, 2006, 103, 19243.

Solving New Structures: A Continuous Endeavor

RC Mutant (*B. Viridis*)
Solved at 2.5 Å

Target 1:

P4 2.9 Å $\alpha=\beta=\gamma=$ 90 °, a=183.9 Å, b=183.9 Å, c=113.9 Å.

Target 2:

P2 6.5 Å α= γ= 90 °, β= 101.5 °, a=171.3 Å, b=232.7 Å, c=331.7 Å.

Unpublished

Acknowledgements: Ismagilov Group at Chicago

Hemostasis: Christian Kastrup, Matthew Runyon, Feng Shen, Rebecca Pompano

Drosophila Development:

Elena Lucchetta, David Adamson

Autocatalytic networks: Cory Gerdts

Collaborators:

James Norris, Nina Ponomarenko, Philip Laible, Amy Rosenzweig, James Barber, Lance Stewart

Protein Crystallization and Droplets:

Liang Li, Cory Gerdts, Delai Chen, Qiang Fu, Debarshi Mustafi

Microgram organic reactions: Delai Chen, Jason Kreutz

Other Stories: James Boedicker, Meghan Bush

Postdoctoral fellowships, publications: ismagilovlab.uchicago.edu

Financial support:

- NIH/NIBIB
 NIH/NIGMS
 NIH/NCRR (PSI2)
- NSF CAREER
 NSF CRC
 Office of Naval Research,
- Searle Scholars Program,
- Research Corporation, Camille and Henry Dreyfus Foundation,
- NSF/Chicago MRSEC,
 DuPont,
 A. P. Sloan,
- Burroughs Wellcome Fund
 Beckman Foundation